Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 16

Answer

a)$\frac{2}{5}\sqrt{5x+8}+C$ b)$\frac{2}{5}\sqrt{5x+8}+C$

Work Step by Step

a)Let $u=5x+8=>du=5 dx=>\frac{1}{5}du=dx$ $\int \frac{dx}{\sqrt{5x+8}} =\int \frac{1}{5}(\frac{1}{\sqrt{u}})du$ =$\frac{1}{5} \int u^{-1/2}du$ =$\frac{1}{5}(2u^{1/2})+C$ =$\frac{2}{5}\sqrt{5x+8}+C$ --- b)Let u=$\sqrt{5x+8} =>du=\frac{1}{2}(5x+8)^\frac{-1}{2}$(5)dx =$\frac{2}{5}du=\frac{dx}{\sqrt{5x+8}}$ =$\int \frac{dx}{\sqrt{5x+8}}=\int \frac{2}{5}du$ =$\frac{2}{5}u+C$ =$\frac{2}{5}\sqrt{5x+8}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.