Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 13

Answer

$\int\sqrt{x}\sin^2(x^{3/2} -1)dx = \frac{1}{3}(x^{3/2} -1 - \frac{1}{2}\sin(2(x^{3/2} - 1))) + C$

Work Step by Step

$\int\sqrt{x}\sin^2(x^{3/2} -1)dx\space$ and $\space u = x^{3/2} - 1$ $du = \frac{3}{2}\sqrt{x}\cdot dx$ Doing the substitution $\space u = x^{3/2} - 1$ $\int\sin^2(u)\frac{2}{3}du\space\Rightarrow\space\frac{2}{3}\int\sin^2(u)du\space\space\space(\mathsf{a})$ Remember that $\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$ $\int\frac{1 - \cos(2u)}{2}du\space\Rightarrow\space\frac{1}{2}\int(1-\cos(2u))du\space\space\space(\mathsf{b})$ Combining the two expressions ($\mathsf{a}$ and $\mathsf{b}$) : $\frac{1}{3}\int (1 - cos(2u))du$ Applying the integrative rules: $\frac{1}{3}\int 1du - \frac{1}{3}\int\cos(2u)du$ Calculating the first integral: $\frac{1}{3}\int 1du = \frac{1}{3}u\space\space\space\mathsf{A}$ Calculating the second integral: $-\frac{1}{3}\int\cos(2u)du$ First we need to use the substitution $h = 2u$ and $dh = 2du$ $-\frac{1}{3}\int\cos(h)\frac{dh}{2}\space\Rightarrow\space-\frac{1}{6}\int\cos(h)dh$ $-\frac{1}{6}\int\cos(h)dh = -\frac{1}{6}\sin(h)$ Backing to $u$ $-\frac{1}{6}\sin(2u)\space\space\space\mathsf{B}$ Combining the two expressions ($\mathsf{A}$ and $\mathsf{B}$) : $\frac{1}{3}u - \frac{1}{6}\sin(2u)\space\Rightarrow\space\frac{1}{3}(u - \frac{1}{2}\sin(2u))$ Backing to x $\int\sqrt{x}\sin^2(x^{3/2} -1)dx = \frac{1}{3}(x^{3/2} -1 - \frac{1}{2}\sin(2(x^{3/2} - 1))) + C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.