Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 14

Answer

-$\frac{sin \frac{2}{x}}{4}$ - $\frac{1}{2x}$ +c

Work Step by Step

u = $\frac{-1}{x}$ du = $\frac{1}{x^{2}}$ dx $\int$ $\frac{1}{x^{2}}${$cos^{2}$($\frac{1}{x}$)dx = $\int$$cos^{2}$(-u) du = $\int$$cos^{2}$(u) du = $\int$ ($\frac{cos 2u}{2}$ + $\frac{1}{2}$ ) du = $\frac{sin 2u}{4}$ + $\frac{u}{2}$ +c = -$\frac{sin \frac{2}{x}}{4}$ - $\frac{1}{2x}$ +c
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.