Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 34

Answer

$$2\sin \left( {\sqrt t + 3} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt t }}\cos \left( {\sqrt t + 3} \right)} dt \cr & {\text{Integrate by the substitution method}} \cr & u = \sqrt t + 3,\,\,\,\,\,du = \frac{1}{{2\sqrt t }}dt,\,\,\,dt = 2\sqrt t du \cr & {\text{Write the integrand in terms of }}u \cr & \int {\frac{1}{{\sqrt t }}\cos \left( {\sqrt t + 3} \right)} dt = \int {\frac{1}{{\sqrt t }}\cos \left( u \right)} \left( {2\sqrt t du} \right) \cr & = \int {\cos \left( u \right)} \left( {2du} \right) \cr & = 2\int {\cos u} du \cr & = 2\sin u + C \cr & {\text{Write in terms of }}t;{\text{ substitute }}\sqrt t + 3{\text{ for }}u \cr & = 2\sin \left( {\sqrt t + 3} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.