Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 15

Answer

a) $\frac{-1}{4}cot^2 2\theta+C$ B) $\frac{-1}{4}csc^2 2\theta+C$

Work Step by Step

(a)Let $u=cot2\theta=>du=-2-csc^2 2\theta d \theta$ $=>\frac{-1}{2}du=csc^2 2\theta d\theta$ $\int csc^2 2\theta \cot 2\theta d \theta=-\int \frac{1}{2}udu$ $\frac{-1}{2}(\frac{u^2}{4})+C$ $\frac{-u^2}{4}+C$ =$\frac{1}{4}cot^2 2\theta+C$ --- b)Let $u=csc2\theta=>du=-2-csc^2 2\theta cot 2\theta d \theta$ $=>\frac{-1}{2}du=csc^2 2\theta cot 2\theta d\theta$ $\int csc^2 2\theta \cot 2\theta d \theta=-\int \frac{1}{2}udu$ $\frac{-1}{2}(\frac{u^2}{4})+C$ $\frac{-u^2}{4}+C$ =$\frac{1}{4}csc^2 2\theta+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.