Answer
a) $\frac{-1}{4}cot^2 2\theta+C$
B) $\frac{-1}{4}csc^2 2\theta+C$
Work Step by Step
(a)Let $u=cot2\theta=>du=-2-csc^2 2\theta d \theta$
$=>\frac{-1}{2}du=csc^2 2\theta d\theta$
$\int csc^2 2\theta \cot 2\theta d \theta=-\int \frac{1}{2}udu$
$\frac{-1}{2}(\frac{u^2}{4})+C$
$\frac{-u^2}{4}+C$
=$\frac{1}{4}cot^2 2\theta+C$
---
b)Let $u=csc2\theta=>du=-2-csc^2 2\theta cot 2\theta d \theta$
$=>\frac{-1}{2}du=csc^2 2\theta cot 2\theta d\theta$
$\int csc^2 2\theta \cot 2\theta d \theta=-\int \frac{1}{2}udu$
$\frac{-1}{2}(\frac{u^2}{4})+C$
$\frac{-u^2}{4}+C$
=$\frac{1}{4}csc^2 2\theta+C$