Answer
$\frac{2}{3}(1+x)^{3/2}-2(1+x)^{1/2}+C$
Work Step by Step
Let u=$1+x
$
$x=u-1=>dx=du$
=$\int \frac{x}{\sqrt{1+x}}dx= \int \frac{u-1}{\sqrt{u}}du$
=$\int (u^{1/2}-u^{-1/2})du$
=$\frac{2}{3}u^{3/2}-2u^{1/2}+C$
=$\frac{2}{3}(1+x)^{3/2}-2(1+x)^{1/2}+C$