Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 6

Answer

$\int \frac{(1 + \sqrt{x})^{\frac{1}{3}}}{\sqrt{x}} dx = \frac{3}{2}(1+\sqrt{x})^\frac{4}{3} + C$

Work Step by Step

$\int \frac{(1 + \sqrt{x})^{\frac{1}{3}}}{\sqrt{x}} dx\space$ and $\space u = 1 + \sqrt{x}$ $du = \frac{1}{2\sqrt{x}}dx$ Doing the substitution $\space u = 1 + \sqrt{x}$ $\int (u)^{\frac{1}{3}} 2du\space$ => $\space2\int u^\frac{1}{3} du$ Applying the power rule for integrals $2\int u^\frac{1}{3} du = \frac{3}{2}u^\frac{4}{3} + C$ Backing to x $\int \frac{(1 + \sqrt{x})^{\frac{1}{3}}}{\sqrt{x}} dx = \frac{3}{2}(1+\sqrt{x})^\frac{4}{3} + C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.