Answer
$\frac{-2}{5}(1-\theta^2)^{5/4} +C$
Work Step by Step
Let $u=1-\theta^2=>du=-2\theta d\theta=>\frac{-1}{2}du=\theta d\theta$
=$\int \theta \sqrt[4] {1-\theta^2}d \theta$
=$\int \sqrt[1]{u}(-\frac{1}{2}du)$
=$(\frac{-1}{2})(\frac{4}{5}u^{5/4})+C$
=$\frac{-2}{5}(1-\theta^2)^{5/4} +C$