Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 40

Answer

-$ \frac{1}{3}.{ (1-\frac{1}{x^{2}})^{3/2}}$

Work Step by Step

$\int \frac{1}{x^{3}} \sqrt \frac{x^{2}-1}{x^{2}} dx $ Equation=$\int \frac{1}{x^{3}} \sqrt (1-\frac{1}{x^{2}}) dx $ Let u = $ (1-\frac{1}{x^{2}})$ du = $\frac{-2}{x^{3}}$ $-\frac{du}{2}$ = $\frac{1}{x^{3}}$ Putting values in equation =$\int \sqrt u (-\frac{du}{2}) $ =-$\frac{1}{2} \int \sqrt u du$ =-$\frac{1}{2} \int \sqrt u du$ =-$\frac{1}{2} . \frac{u^{3/2}}{\frac{3}{2}}$ =-$\frac{1}{2} . \frac{2u^{3/2}}{3}$ =-$ \frac{u^{3/2}}{3}$ Putting values of u =-$ \frac{1}{3}.{ (1-\frac{1}{x^{2}})^{3/2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.