Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 44

Answer

$\frac{2}{5}$ $(4-x)^{\frac{5}{2}}$ - $\frac{8}{3}$$(4-x)^{\frac{3}{2}}$ + $c$

Work Step by Step

$u$ = $4-x$ $du$ = $-dx$ $u$ = $4-x$ $so$ $x$ = $4-u$ $\int$ $x$ $\sqrt{4-x}$ $dx$ = -$\int$ $(4-u)$ $u^{\frac{1}{2}}$ $du$ = $\int$ $(u^{\frac{3}{2}}$ - $4u^{\frac{1}{2}})$ $du$ = $\frac{2}{5}$ $u^{\frac{5}{2}}$ - $\frac{8}{3}$$u^{\frac{3}{2}}$ + $c$ = $\frac{2}{5}$ $(4-x)^{\frac{5}{2}}$ - $\frac{8}{3}$$(4-x)^{\frac{3}{2}}$ + $c$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.