Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 295: 12

Answer

$\int 12(y^4 + 4y^2 + 1)^2(y^3+2y)dy = (y^4+4y^2+1)^3+C$

Work Step by Step

$\int 12(y^4 + 4y^2 + 1)^2(y^3+2y)dy\space$ and $\space u=y^4 + 4y^2 + 1$ $du = (4y^3 + 8y)dy$ Doing the substitution $\space u = y^4 + 4y^2 + 1$: $\int(u)^2\cdot 3du\space\Rightarrow\space 3\int u^2 du$ Applying the integrative rules: $3\int u^2 du = 3\cdot\frac{u^3}{3}+C\space\Rightarrow\space 3\int u^2 du = u^3+C$ Backing to $y$ $\int 12(y^4 + 4y^2 + 1)^2(y^3+2y)dy = (y^4+4y^2+1)^3+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.