Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 87

Answer

$$\frac{-1}{f(x)}+C $$

Work Step by Step

Given $$\int f(x)^{3} f^{\prime}(x) \mathrm{d} x$$ Let $$ u=f(x) \ \ \ \Rightarrow \ \ \ du = f'(x) dx$$ Then \begin{aligned} \int \frac{f^{\prime}(x)}{f(x)^{2}} \mathrm{d} x &=\int \frac{d u}{u^{2}} \\ &=\frac{u^{-1}}{-1}+C \\ &=-\frac{1}{u}+C \\ &=\frac{-1}{f(x)}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.