Answer
$$\frac{(f(x))^{4}}{4}+C$$
Work Step by Step
Given
$$\int f(x)^{3} f^{\prime}(x) \mathrm{d} x$$
Let
$$ u=f(x) \ \ \ \Rightarrow \ \ \ du = f'(x) dx$$
Then
\begin{aligned} \int f(x)^{3} f^{\prime}(x) \mathrm{d} x &=\int u^{3} \mathrm{d} u \\ &=\frac{u^{4}}{4}+C \\ &=\frac{(f(x))^{4}}{4}+C \end{aligned}