Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 76

Answer

$$\frac{9}{68}$$

Work Step by Step

Given $$\int_{0}^{4} x \sqrt{x^{2}+9} d x $$ Let $$ u= x^2+9 \ \ \ \Rightarrow\ \ \ du = 2xdx$$ At $ x=1\to u= 8$ and $ x= 2 \to u= 17$ \begin{aligned} \int_{1}^{2} \frac{4 x+12}{\left(x^{2}+6 x+1\right)^{2}} d x &=2 \int_{8}^{17} \frac{1}{u^{2}} d u\\ &=2 \int_{8}^{17} u^{-2} d u \\ &=-\left.2\left(\frac{1}{u}\right)\right|_{8} ^{17} \\ &=-2\left(\frac{1}{17}-\frac{1}{8}\right)=\frac{9}{68}\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.