Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 84

Answer

$$ \frac{8}{3}$$

Work Step by Step

Given $$ \int_{-\pi/4}^{\pi/4} \sec^4\theta d\theta= \int_{-\pi/4}^{\pi/4} (1+\tan^2 \theta)\sec^2\theta d\theta$$ Let $$ u=\tan \theta \ \ \ \Rightarrow \ \ \ du = \sec^2 \theta d\theta$$ At $$ \theta= -\pi/4 \to u= -1, \ \ \theta= \pi/4\to u= 1$$ Then \begin{aligned} \int_{-\pi/4}^{\pi/4} \sec^4\theta d\theta&= \int_{-\pi/4}^{\pi/4} (1+\tan^2 \theta)\sec^2\theta d\theta\\ &= \int_{-1}^{1} (1+u^2)du\\ &= u +\frac{1}{3}u^3 \bigg|_{-1}^{1}\\ &= \frac{8}{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.