Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 72

Answer

$$\frac{38}{3}$$

Work Step by Step

Given $$ \int_{1}^{6} \sqrt{x+3} d x $$ Let $$u= x+3 \ \ \ \ \Rightarrow \ \ \ du = dx $$ At $x=1 \to u= 4$ and at $x=6 \to u=9 $ Then \begin{aligned} \int_{1}^{6} \sqrt{x+3} d x &=\int_{4}^{9} \sqrt{u} d u \\ &=\left.\frac{2}{3} u^{3 / 2}\right|_{4} ^{9} \\ &=\frac{2}{3}\left(9^{3 / 2}-4^{3 / 2}\right) \\ &=\frac{2}{3}(27-8)=\frac{2}{3}(19)\\ &=\frac{38}{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.