Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 73

Answer

$$ \frac{3}{16}$$

Work Step by Step

Given $$\int_{0}^{1}\frac{x}{\left(x^{2}+1\right)^{3}} d x$$ Let $$u= x^2+1 \ \ \ \ \Rightarrow \ \ \ du =2xdx $$ At $x=0 \to u= 1$ and at $x=1 \to u=2 $ Then \begin{aligned} \int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{3}} d x &=\frac{1}{2} \int_{1}^{2} \frac{1}{u^{3}} d u \\ &=\left.\frac{1}{2}\left(\frac{1}{-2} u^{-2}\right)\right|_{1} ^{2} \\ &=-\left.\frac{1}{4}\left(\frac{1}{u^{2}}\right)\right|_{1} ^{2} \\ &=-\frac{1}{4}\left(\frac{1}{4}-1\right)= \frac{3}{16} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.