Answer
$$ \frac{1}{5} \tan^{5}x+C$$
Work Step by Step
Given $$ \int \sec ^{2} x \tan ^{4} x d x $$
Let
$$u=\tan x \ \ \ \ \Rightarrow \ \ \ du =\sec ^{2} x dx $$
\begin{aligned} \int \sec ^{2} x \tan ^{4} x d x &=\int u^{4} d u \\ &=\frac{1}{5} u^{5}+C\\
&= \frac{1}{5} \tan^{5}x+C \end{aligned}