Answer
$$\frac{1}{9} (\sin \theta)^{9}+C$$
Work Step by Step
Given $$\int \sin ^{8} \theta \cos \theta d \theta$$
Let
$$ u=\sin \theta \ \ \ \ \Rightarrow \ \ \ du = \cos \theta d \theta$$
Then
\begin{aligned} \int \sin ^{8} \theta \cos \theta d \theta &=\int u^{8} d u \\ &=\frac{1}{9} u^{9}+C\\
&=\frac{1}{9} (\sin \theta)^{9}+C \end{aligned}