Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 50

Answer

$$ -\frac{1}{3} \cos (x^{3}+1)+C$$

Work Step by Step

Given $$ \int x^{2} \sin \left(x^{3}+1\right)dx $$ Let $$u=x^{3}+1\ \ \ \Rightarrow \ \ \ du= 3x^{2}dx$$ Then \begin{aligned} \int x^{2} \sin \left(x^{3}+1\right) dx&=\frac{1}{3} \int \sin u d u \\ &=-\frac{1}{3} \cos u+C\\ &= -\frac{1}{3} \cos (x^{3}+1)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.