Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 83

Answer

$$\frac{20}{3} \sqrt{5}-\frac{32}{5} \sqrt{3}$$

Work Step by Step

Given $$ \int_{0}^{2} r \sqrt{5-\sqrt{4-r^{2}}} d r$$ Let $$ u= 5-\sqrt{4-r^{2}} \ \ \ \Rightarrow \ \ \ du =\frac{rdr}{\sqrt{4-r^{2}}} \ \ \Rightarrow rdr = (5-u)du$$ At $$ r= 0 \to u= 3, \ \ r= 2\to u= 5$$ Then \begin{aligned} \int_{0}^{2} r \sqrt{5-\sqrt{4-r^{2}}} d r&=\int_{3}^{5} \sqrt{u}(5-u) d u\\ &=\int_{3}^{5}\left(5 u^{1 / 2}-u^{3 / 2}\right) d u\\ &=\left.\left(\frac{10}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}\right)\right|_{3} ^{5}\\ &=\left(\frac{50}{3} \sqrt{5}-10 \sqrt{5}\right)-\left(10 \sqrt{3}-\frac{18}{5} \sqrt{3}\right)\\ &=\frac{20}{3} \sqrt{5}-\frac{32}{5} \sqrt{3}\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.