Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 63

Answer

$$ -\frac{2}{1+\sqrt{x}}+\frac{1}{(1+\sqrt{x})^{2}}+C $$

Work Step by Step

Given $$ \int \frac{d x}{(1+\sqrt{x})^{3}}$$ Let $$ u=1+\sqrt{x}\ \ \ \ \Rightarrow \ \ du =\frac{dx}{2\sqrt{x}} $$ Then \begin{aligned} \int \frac{d x}{(1+\sqrt{x})^{3}} &=2 \int \frac{u-1}{u^{3}} d u \\ &=2 \int\left(u^{-2}-u^{-3}\right) d u \\ &=-\frac{2}{u}+\frac{1}{u^{2}}+C \\ &= -\frac{2}{1+\sqrt{x}}+\frac{1}{(1+\sqrt{x})^{2}}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.