Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 58

Answer

$$\frac{-1}{2 (1+\sin 2x)}+c$$

Work Step by Step

Given $$ \int \frac{\cos 2 x}{(1+\sin 2 x)^{2}} d x $$ Let $$u=1+\sin 2 x \ \ \ \ \Rightarrow \ \ \ du =2\cos 2x dx $$ \begin{aligned} \int \frac{\cos 2 x}{(1+\sin 2 x)^{2}} d x&=\frac{1}{2} \int \frac{1}{u^{2}} d u \\ &= \frac{-1}{2u}+c\\ &= \frac{-1}{2 (1+\sin 2x)}+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.