Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 80

Answer

$$ \frac{\sqrt{3}}{3}$$

Work Step by Step

Given $$ \int_{0}^{\pi / 6} \sec ^{2}\left(2 x-\frac{\pi}{6}\right) d x$$ Let $$ u= 2 x -\frac{\pi}{6} \ \ \ \Rightarrow \ \ \ du =2dx$$ At $$ x= 0\to u= -\pi / 6, \ \ x= \pi/6\to u= \pi / 6$$ Then \begin{aligned} \int_{0}^{\pi / 6} \sec ^{2}\left(2 x-\frac{\pi}{6}\right) d x&= \frac{1}{2} \int_{-\pi / 6}^{\pi / 6} \sec ^{2} u d u\\ &=\left.\frac{1}{2} \tan u\right|_{-\pi / 6} ^{\pi / 6}\\ &=\frac{1}{2}\left( \frac{\sqrt{3}}{3}+ \frac{\sqrt{3}}{3} \right)\\ &= \frac{\sqrt{3}}{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.