Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 82

Answer

$$\frac{2}{3}(3 \sqrt{3}-1)$$

Work Step by Step

Given $$ \int_{\pi / 3}^{\pi / 2} \cot ^{2} \frac{x}{2} \csc ^{2} \frac{x}{2} d x$$ Let $$ u= \cot \frac{x}{2} \ \ \ \Rightarrow \ \ \ du =-\frac{1}{2} \csc ^{2} \frac{x}{2} d x$$ At $$ x= \pi/3 \to u= \sqrt{3}, \ \ x= \pi/2\to u= 1$$ Then \begin{aligned}\int_{\pi / 3}^{\pi / 2} \cot ^{2} \frac{x}{2} \csc ^{2} \frac{x}{2} d x&=-2 \int_{\sqrt{3}}^{1} u^{2} d u\\ &=-\left.\frac{2}{3} u^{3}\right|_{\sqrt{3}} ^{1}\\ &=\frac{2}{3}(3 \sqrt{3}-1)\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.