Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 79

Answer

$$2\sqrt{2}$$

Work Step by Step

Given $$ \int_{-\pi / 2}^{\pi / 2} \frac{\cos x d x}{(\sqrt{\sin x+1)}} $$ Let $$ u= \sin x +1 \ \ \ \Rightarrow \ \ \ du =\cos x dx$$ At $$ x= -\pi/2\to u= 0, \ \ x= \pi/2\to u= 2$$ Then \begin{aligned} \int_{-\pi / 2}^{\pi / 2} \frac{\cos x d x}{(\sqrt{\sin x+1)}} &=\int_{0}^{2} \frac{1}{\sqrt{u}} d u \\ &=\int_{0}^{2} u^{-1 / 2} d u \\ &=\left.2 u^{1 / 2}\right|_{0} ^{2} \\ &=2\sqrt{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.