Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 78

Answer

$$3$$

Work Step by Step

Given $$ \int_{10}^{17}(x-9)^{-\frac{2}{3}} d x$$ Let $$ u= x-9 \ \ \ \Rightarrow \ \ \ du =dx$$ At $$ x= 10\to u= 1, \ \ x= 17\to u= 8$$ Then \begin{aligned} \int_{10}^{17}(x-9)^{-\frac{2}{3}} d x &=\int_{1}^{8} u^{-\frac{2}{3}} d x \\ &=\left.\frac{u^{-\frac{2}{3}+1}}{-\frac{2}{3}+1}\right|_{1} ^{8} \\ &=3\left(8^{1/3}-1\right) \\ &=3(2-1) \\ &=3 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.