Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 57

Answer

$$2 \tan (\sqrt{x})+C$$

Work Step by Step

Given $$\int \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x $$ Let $$u=\sqrt{x} \ \ \ \ \Rightarrow \ \ \ du =\frac{1}{2\sqrt{x}} dx $$ \begin{aligned} \int \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x &=2 \int \sec ^{2} u d u \\ &=2 \tan u+C\\ &= 2 \tan (\sqrt{x})+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.