Answer
$$\frac{1}{4}$$
Work Step by Step
Given
$$ \int_{0}^{\pi / 2} \cos ^{3} x \sin x d x$$
Let
$$ u= \cos x \ \ \ \Rightarrow \ \ \ du =-\sin xdx$$
At $$ x= 0\to u= 1, \ \ x= \pi/2\to u= 0$$
Then
\begin{aligned} \int_{0}^{\pi / 2} \cos ^{3} x \sin x d x&=-\int_{1}^{0} u^{3} d u\\
&=\int_{0}^{1} u^{3} d u\\
&= \frac{1}{4}u^4\bigg|_{0}^{1}\\
&= \frac{1}{4} \end{aligned}