Answer
$$ \frac{1}{2} (\sec \theta-1)^{2}+C$$
Work Step by Step
Given $$ \int \sec \theta \tan \theta(\sec \theta-1) d \theta $$
Let
$$u=\sec \theta-1 \ \ \ \ \Rightarrow \ \ \ du =\sec \theta \tan \theta d\theta $$
\begin{aligned} \int \sec \theta \tan \theta(\sec \theta-1) d \theta &=\int u d u \\ &=\frac{1}{2} u^{2}+C\\
&= \frac{1}{2} (\sec \theta-1)^{2}+C \end{aligned}