Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 61

Answer

$$ \frac{1}{2} (\sec \theta-1)^{2}+C$$

Work Step by Step

Given $$ \int \sec \theta \tan \theta(\sec \theta-1) d \theta $$ Let $$u=\sec \theta-1 \ \ \ \ \Rightarrow \ \ \ du =\sec \theta \tan \theta d\theta $$ \begin{aligned} \int \sec \theta \tan \theta(\sec \theta-1) d \theta &=\int u d u \\ &=\frac{1}{2} u^{2}+C\\ &= \frac{1}{2} (\sec \theta-1)^{2}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.