Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 59

Answer

$$-\frac{1}{6} (\cos 4 x+1)^{3 / 2}+C $$

Work Step by Step

Given $$ \int \sin 4 x \sqrt{\cos 4 x+1} d x $$ Let $$u=\cos 4 x+1 \ \ \ \ \Rightarrow \ \ \ du =-4\sin 4x dx $$ \begin{aligned} \int \sin 4 x \sqrt{\cos 4 x+1} d x &=-\frac{1}{4} \int \sqrt{u} d u \\ &=-\frac{1}{4} \int u^{1 / 2} d u \\ &=-\frac{1}{4}\left(\frac{2}{3} u^{3 / 2}+C\right) \\ &=-\frac{1}{6} u^{3 / 2}+C\\ &=-\frac{1}{6} (\cos 4 x+1)^{3 / 2}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.