Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 60

Answer

$$\frac{1}{6} (3 \sin x-1)^{2}+C$$

Work Step by Step

Given $$ \int \cos x(3 \sin x-1) d x $$ Let $$u=3 \sin x-1 \ \ \ \ \Rightarrow \ \ \ du =3\cos x dx $$ \begin{aligned} \int \cos x(3 \sin x-1) d x &=\frac{1}{3} \int u d u \\ &=\frac{1}{3}\left(\frac{1}{2} u^{2}+C\right) \\ &=\frac{1}{6} u^{2}+C \\ &= \frac{1}{6} (3 \sin x-1)^{2}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.