Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 85

Answer

$$ \frac{1}{n+1}$$

Work Step by Step

Given $$\int_{0}^{\pi / 2} \sin ^{n} x \cos x d x$$ For $n=0$ $$\int_{0}^{\pi / 2} \sin ^{n} x \cos x d x=\int_{0}^{\pi / 2} \cos x d x=\sin x \bigg|_{0}^{\pi/2}=1 $$ For n$\gt0$, let $$ u=\sin x \ \ \ \Rightarrow \ \ \ du = \cos x dx$$ At $$ x= 0 \to u= 0, \ \ x= \pi/2\to u= 1$$ Then \begin{aligned} \int_{0}^{\pi / 2} \sin ^{n} x \cos x d x &=\int_{0}^{1} u^{n} d u \\ &=\left.\frac{u^{n+1}}{n+1}\right|_{0} ^{1} \\ &=\frac{1}{n+1} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.