Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 276: 74

Answer

$$ \frac{42}{5 }$$

Work Step by Step

Given $$ \int_{-1}^{2} \sqrt{5 x+6} d x$$ Let $$ u= 5x+6 \ \ \ \Rightarrow\ \ \ du = 5dx$$ At $ x=-1\to u= 1$ and $ x= 2 \to u= 16$ \begin{align*} \int_{-1}^{2} \sqrt{5 x+6} d x &=\frac{1}{5} \int_{1}^{16} \sqrt{u} d u=\frac{1}{5} \int_{1}^{16} u^{1 / 2} d u \\ &=\left.\frac{1}{5}\left(\frac{2}{3} u^{3 / 2}\right)\right|_{1} ^{16} \\ &=\frac{2}{15}\left(16^{3 / 2}-1^{3 / 2}\right) \\ &=\frac{2}{15}(64-1)=\frac{2}{15}(63)\\ &= \frac{42}{5 } \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.