Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 9

Answer

$\tan^{-1}(e^{z})+C$

Work Step by Step

Multiplying numerator and denominator with $e^{z}$, we get $\int \frac{dz}{e^{z}+e^{-z}}=\int \frac{e^{z}}{e^{2z}+1}dz$ Now, substitute $u=e^{z}$ so that $dz=\frac{du}{e^{z}}$. Then, $\int \frac{e^{z}}{e^{2z}+1}dz=\int \frac{e^{z}}{u^{2}+1}\frac{du}{e^{z}}=\int\frac{1}{u^{2}+1}du$ $=\tan^{-1}u+C=\tan^{-1}(e^{z})+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.