Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 33

Answer

$$ - 1 + \frac{\pi }{2}$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^0 {\sqrt {\frac{{1 + y}}{{1 - y}}} } dy \cr & {\text{Use the property }}\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }} \cr & \int_{ - 1}^0 {\frac{{\sqrt {1 + y} }}{{\sqrt {1 - y} }}} dy \cr & {\text{Rationalize the numerator}} \cr & = \int_{ - 1}^0 {\frac{{\sqrt {1 + y} }}{{\sqrt {1 - y} }}} \left( {\frac{{\sqrt {1 + y} }}{{\sqrt {1 + y} }}} \right)dy \cr & = \int_{ - 1}^0 {\frac{{1 + y}}{{\sqrt {1 - {y^2}} }}} dy \cr & = \int_{ - 1}^0 {\left( {\frac{1}{{\sqrt {1 - {y^2}} }} + \frac{y}{{\sqrt {1 - {y^2}} }}} \right)} dy \cr & {\text{Integrating}} \cr & \left( {{{\sin }^{ - 1}}y - \sqrt {1 - {y^2}} } \right)_{ - 1}^0 \cr & {\text{Evaluating, we get:}} \cr & = \left( {{{\sin }^{ - 1}}0 - \sqrt {1 - {0^2}} } \right) - \left( {{{\sin }^{ - 1}}\left( { - 1} \right) - \sqrt {1 - {{\left( { - 1} \right)}^2}} } \right) \cr & = \left( {0 - 1} \right) - \left( { - \frac{\pi }{2} - \sqrt 0 } \right) \cr & = - 1 + \frac{\pi }{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.