Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 27

Answer

$$\int \frac{2 d x}{x \sqrt{1-4 \ln^{2} x}}=\sin^{-1}(2 \ln x)+C $$

Work Step by Step

Given $$\int \frac{2 d x}{x \sqrt{1-4 \ln^{2} x}}$$ Let $$\ln x=t \Rightarrow \frac{1}{x}dx= dt $$ So, we get \begin{aligned} I&= \int \frac{2x d t}{x\sqrt{1-4 t^{2}}}\\ &=\int \frac{2 d t}{\sqrt{1-4 t^{2}}}\\ &=\int \frac{2 d t}{\sqrt{4 \left( \frac{1}{4}-t^{2}\right)}} \\ &=\int \frac{2 d t}{\sqrt{4}\sqrt{ \left( \frac{1}{4}-t^{2}\right)}} \\ &=\int \frac{ d t}{\sqrt{ \left( \frac{1}{4}-t^{2}\right)}} \\ &\text{Since}\int \frac{ d z}{\sqrt{ \left( a^2-z^{2}\right)}}=\sin^{-1}\frac{z}{a}, \text{So we get } \\ I&=\sin^{-1}\frac{t}{1/2}+C\\ &=\sin^{-1}2 t+C\\ &=\sin^{-1}(2 \ln x)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.