Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 12

Answer

$\ln 9 - 4$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^3 {\frac{{4{x^2} - 7}}{{2x + 3}}} dx \cr & {\text{Apply long division to the integrand }}\frac{{4{x^2} - 7}}{{2x + 3}}{\text{ }} \cr & \frac{{4{x^2} - 7}}{{2x + 3}} = 2x - 3 + \frac{2}{{2x + 3}} \cr & {\text{Then}}{\text{,}} \cr & \cr & \int_{ - 1}^3 {\frac{{4{x^2} - 7}}{{2x + 3}}} dx = \int_{ - 1}^3 {\left( {2x - 3 + \frac{2}{{2x + 3}}} \right)} dx \cr & \cr & {\text{Integrating}} \cr & = \left( {{x^2} - 3x + \ln \left| {2x + 3} \right|} \right)_{ - 1}^3 \cr & = \left( {{{\left( 3 \right)}^2} - 3\left( 3 \right) + \ln \left| {2\left( 3 \right) + 3} \right|} \right) - \left( {{{\left( { - 1} \right)}^2} - 3\left( { - 1} \right) + \ln \left| {2\left( { - 1} \right) + 3} \right|} \right) \cr & {\text{Simplifying, we get}} \cr & = \left( {9 - 9 + \ln 9} \right) - \left( {1 + 3 + \ln 1} \right) \cr & = \ln 9 - 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.