Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 15

Answer

$\sqrt {2}$

Work Step by Step

$\int\frac{1+\sin\theta}{cos^{2}\theta}d\theta=\int(\sec^{2}\theta+\tan\theta\sec\theta)d\theta$ $=\int \sec^{2}\theta\,d\theta+\int\tan\theta\sec\theta\,d\theta= \tan\theta+\sec\theta+C$ Therefore, $\int^{\pi/4}_{0}\frac{1+\sin\theta}{cos^{2}\theta}d\theta=[\tan\theta+\sec\theta]^{\pi/4}_{0}$ $=(\tan\frac{\pi}{4}+\sec\frac{\pi}{4})-(\tan 0+\sec 0)=(1+\sqrt {2})-(0+1)=\sqrt {2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.