Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 30

Answer

$$6\cosh \left( {\frac{x}{2} + \ln 5} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {3\sinh \left( {\frac{x}{2} + \ln 5} \right)} dx \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = \frac{x}{2} + \ln 5{\text{ then }}\frac{{du}}{{dx}} = \frac{1}{2},\,\,\,\,dx = 2du \cr & {\text{write the integrand in terms of }}u \cr & \int {3\sinh \left( {\frac{x}{2} + \ln 5} \right)} dx = \int {3\sinh \left( u \right)} \left( {2du} \right) \cr & {\text{cancel common terms}} \cr & = 6\int {\sinh \left( u \right)} du \cr & {\text{integrating}}{\text{,}} \cr & = 6\cosh \left( u \right) + C \cr & {\text{replace }}\frac{x}{2} + \ln 5{\text{ for }}u \cr & = 6\cosh \left( {\frac{x}{2} + \ln 5} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.