Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 20

Answer

$$\int \frac{d t}{t \sqrt{\left(3+ t^{2}\right)}}=-\frac{1}{\sqrt{3}} \operatorname{csch}^{-1}\left|\frac{t}{\sqrt{3}}\right|+C $$

Work Step by Step

Given $$\int \frac{d t}{t \sqrt{\left(3+ t^{2}\right)}}$$ So, we have \begin{aligned} I&=\int \frac{d t}{t \sqrt{\left(3+ t^{2}\right)}}=\\ &\int \frac{d t}{t \sqrt{3\left(1+\frac{t^{2}}{3}\right)}}\\ &=\int \frac{d t}{\sqrt{3 }t \sqrt{1+\frac{t^{2}}{3}}} \end{aligned} Let $$ u=\frac{t}{\sqrt{3}},\Rightarrow d u=\frac{d t}{\sqrt{3}}$$ So, we get \begin{aligned} I& =\int \frac{\sqrt{3} d u}{\sqrt{3}(\sqrt{3} u) \sqrt{1+u^{2}}}\\ &=\frac{1}{\sqrt{3}} \int \frac{d u}{u \sqrt{1+u^{2}}}\\ &=-\frac{1}{\sqrt{3}} \operatorname{csch}^{-1}|u|+C\\ &=-\frac{1}{\sqrt{3}} \operatorname{csch}^{-1}\left|\frac{t}{\sqrt{3}}\right|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.