Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 18

Answer

$$\frac{{{2^{\sqrt y }}}}{{\ln 2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{2^{\sqrt y }}}}{{2\sqrt y }}dy} \cr & {\text{Integrate by the substitution method}}{\text{,}} \cr & \,\,{\text{Let }}u = \sqrt y ,\,\,\,du = \frac{1}{{2\sqrt y }}dy, \cr & \cr & \,\,{\text{Write the integrand in terms of }}u \cr & \int {\frac{{{2^{\sqrt y }}}}{{2\sqrt y }}dy} = \int {{2^u}du} \cr & {\text{Use the formula }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & \int {{2^u}du} = \frac{{{2^u}}}{{\ln 2}} + C \cr & \cr & {\text{Write in terms of }}y;{\text{ substitute }}\sqrt y {\text{ for }}u \cr & = \frac{{{2^{\sqrt y }}}}{{\ln 2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.