Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 24

Answer

$$\int\left(\sec ^{2} t+ \cot \right)^2 d t=\tan t-2 \ln |\csc t+\cot t|-\cot t-t+C $$

Work Step by Step

Given $$\int\left(\sec ^{2} t+ \cot \right)^2 d t $$ So, we have We can expand the integral as \begin{aligned} I&=\int\left(\sec ^{2} t+ \cot \right)^2 d t\\ &=\int\left(\sec ^{2} t+2 \sec t \cot t+\cot ^{2} t\right) d t\\ &=\int \sec ^{2} t d t+2 \int \sec t \cot t d t+\int \cot ^{2} t d t\\ \end{aligned} Since, we have $$ \sec t \cot t=\frac{1}{\cos t} \cdot \frac{\cos t}{\sin t}=\csc t,\\ \cot ^{2} t= \csc ^{2} t-1 $$ So we get \begin{aligned} I &=\int \sec ^{2} t d t+2 \int \csc t d t+\int\left(\csc ^{2} t-1\right) d t\\ &=\int \sec ^{2} t d t+2 \int \csc t d t+\int \csc ^{2} t d t-\int d t \\ &=\tan t-2 \ln |\csc t+\cot t|-\cot t-t+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.