Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 31

Answer

$$7 + \ln \left( 8 \right)$$

Work Step by Step

$$\eqalign{ & \int_{\sqrt 2 }^3 {\frac{{2{x^3}}}{{{x^2} - 1}}} dx \cr & {\text{By using long division }}\frac{{2{x^3}}}{{{x^2} - 1}} = 2x + \frac{{2x}}{{{x^2} - 1}} \cr & \int_{\sqrt 2 }^3 {\frac{{2{x^3}}}{{{x^2} - 1}}} dx = \int_{\sqrt 2 }^3 {\left( {2x + \frac{{2x}}{{{x^2} - 1}}} \right)} dx \cr & {\text{Integrating}} \cr & = \left( {{x^2} - \ln \left| {{x^2} - 1} \right|} \right)_{\sqrt 2 }^3 \cr & = \left( {{{\left( 3 \right)}^2} + \ln \left| {{{\left( 3 \right)}^2} - 1} \right|} \right) - \left( {{{\left( {\sqrt 2 } \right)}^2} + \ln \left| {{{\left( {\sqrt 2 } \right)}^2} - 1} \right|} \right) \cr & {\text{Simplifying, we get:}} \cr & = \left( {9 + \ln \left( 8 \right)} \right) - \left( {2 + \ln \left( 1 \right)} \right) \cr & = 9 + \ln \left( 8 \right) - 2 \cr & = 7 + \ln \left( 8 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.