Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 10

Answer

$2\pi$

Work Step by Step

$\int\frac{8\,dx}{x^{2}-2x+2}=8\int\frac{\,dx}{x^{2}-2x+2}=8\int\frac{\,dx}{(x-1)^{2}+1}$ Substituting $u=x-1$ so that $dx=du$, we have $8\int\frac{\,dx}{(x-1)^{2}+1}=8\int\frac{du}{u^{2}+1}=8\tan^{-1}(u)+C$ $=8\tan^{-1}(x-1)+C$ Therefore $\int^{2}_{1}\frac{8\,dx}{x^{2}-2x+2}=[8\tan^{-1}(x-1)]^{2}_{1}$ $=8\times\tan^{-1}(1)-8\times\tan^{-1}(0)=8\times\frac{\pi}{4}-8\times0=2\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.