Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 19

Answer

$\ln|1+\sin\theta|+C$

Work Step by Step

$\int\frac{1}{\sec\theta+\tan\theta}d\theta=\int\frac{1}{\frac{1}{\cos\theta}+\frac{\sin\theta}{\cos\theta}}d\theta=\int \frac{\cos\theta}{1+\sin\theta}d\theta$ With $u=\sin\theta$ so that $d\theta=\frac{du}{\cos\theta}$, we have $\int\frac{\cos\theta}{1+\sin\theta}d\theta=\int\frac{\cos\theta}{1+u}\frac{du}{\cos\theta}=\int\frac{1}{1+u}du$ With v=1+u so that du=dv, we have $\int\frac{1}{1+u}du=\int\frac{1}{v}dv=\ln|v|+C=\ln|1+u|+C=\ln|1+\sin\theta|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.