Answer
$$\int \frac{6 d y}{\sqrt{y}(1+y)}=12 \tan ^{-1}(\sqrt{y})+c $$
Work Step by Step
Given $$\int \frac{6 d y}{\sqrt{y}(1+y)}$$
Let $$ y=t^2 \Rightarrow dy=2t dt $$
So, we get
\begin{aligned} I&=6 \int \frac{2 t d t}{t\left(1+t^{2}\right)}\\
&=12 \quad \int \frac{d t}{1+t^{2}}\\
&=12 \tan^{-1}t\\
&=12 \tan ^{-1}(\sqrt{y})+c\end{aligned}