Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 13

Answer

$$\cot t + t + \csc t + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dt}}{{1 - \sec t}}} \cr & {\text{Multiply the numerator and the denomiantor by the conjugate of }}1 - \sec t \cr & = \int {\frac{1}{{1 - \sec t}}} \left( {\frac{{1 + \sec t}}{{1 + \sec t}}} \right)dt \cr & = \int {\frac{{1 + \sec t}}{{1 - {{\sec }^2}t}}} dt \cr & {\text{Use the identity ta}}{{\text{n}}^2}t = {\sec ^2}t - 1 \cr & = \int {\frac{{1 + \sec t}}{{ - {{\tan }^2}t}}} dt \cr & {\text{distribute the numerator and simplify}} \cr & = - \int {\left( {\frac{1}{{{{\tan }^2}t}} + \frac{{\sec t}}{{{{\tan }^2}t}}} \right)} dt \cr & = - \int {\left( {{{\cot }^2}t + \left( {\frac{1}{{\cos t}}} \right)\left( {\frac{{{{\cos }^2}t}}{{{{\sin }^2}t}}} \right)} \right)} dt \cr & {\text{Use the identity }}{\cot ^2}t = {\csc ^2}t - 1 \cr & = - \int {\left( {{{\csc }^2}t - 1 + \left( {\frac{1}{{\sin t}}} \right)\left( {\frac{{\cos t}}{{\sin t}}} \right)} \right)} dt \cr & = - \int {\left( {{{\csc }^2}t - 1 + \csc t\cot t} \right)} dt \cr & = - \int {{{\csc }^2}t} dt + \int {dt} - \int {\csc t\cot t} dt \cr & {\text{Integrating, we get}} \cr & = - \left( { - \cot t} \right) + t - \left( { - \csc t} \right) + C \cr & = \cot t + t + \csc t + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.