Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 14

Answer

$\sin(2t)+t+C$

Work Step by Step

Recall that $\sin 3x=3\sin x-4\sin^{3}x$ and $\csc x=\frac{1}{\sin x}$. Therefore, $\int \csc t \sin 3t\,dt=\int \frac{1}{\sin t} (3\sin t-4\sin^{3}t)dt$ $=\int (3-4\sin^{2}t)\,dt=3t-4\int \sin^{2}t\,dt$ We know that $\sin^{2}x=\frac{1}{2}(1-\cos 2x)$. Therefore $3t-4\int \sin^{2}t\,dt=3t-4\times\frac{1}{2}\int(1-\cos 2t)\,dt$ $=3t-2(t-\frac{\sin 2t}{2})+C=t+\sin2t+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.