Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 23

Answer

$$\int_{0}^{\pi / 2} \sqrt{1-\cos \theta} \ \ d \theta =2 \sqrt{2}\left(1-\frac{1}{\sqrt{2}}\right) $$

Work Step by Step

Given $$\int_{0}^{\pi / 2} \sqrt{1-\cos \theta} d \theta $$ So, we have \begin{aligned} I &=\int_{0}^{\pi / 2} \sqrt{1-\cos \theta} d \theta \\ & .=\int_{0}^{\pi / 2} \sqrt{1-\left(1-2 \sin ^{2} \frac{\theta}{2}\right)} d \theta \\ &= \sqrt{2} \int_{0}^{\pi / 2}\sin \frac{\theta}{2} d \theta \\ &= 2\sqrt{2} \int_{0}^{\pi / 2}\frac{1}{2}\sin \frac{\theta}{2} d \theta \\ &=- 2\sqrt{2} \cos \frac{\theta}{2}|_{0}^{\pi / 2}\\ &=- 2\sqrt{2} \cos \frac{\theta}{4}+ 2\sqrt{2} \cos0 \\ &=2 \sqrt{2}\left(1-\frac{1}{\sqrt{2}}\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.